

AAMA 506 TEST REPORT

Report No.: G0434.01-501-44

Rendered to:

VEKA INC. Fombell, Pennsylvania

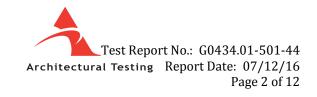
PRODUCT TYPE: PVC Double Hung Window **SERIES/MODEL**: DH57WW/AL-Insert

 Test Date(s):
 06/28/16

 Report Date:
 07/12/16

 Test Record Retention End Date:
 06/28/20

1.0 Report Issued To:	Veka Inc. 100 Veka Drive Fombell, Pennsylvania 16123-0250
2.0 Test Laboratory:	Architectural Testing, Inc., a subsidiary of Intertek (Intertek-ATI) 1140 Lincoln Avenue Springdale, Pennsylvania 15144 724-275-7100


3.0 Project Summary:

- 3.1 Product Type: PVC Double Hung Window
- 3.2 Series/Model: DH57WW/AL-Insert
- **3.3 Compliance Statement**: Results obtained are tested values and were secured by using the designated test method(s). The samples tested met the performance requirements set forth in the referenced test procedures for a ±2400 Pa (±50.13 psf) Design Pressure with missile impacts corresponding to Missile Level D and Wind Zone 3.
- 3.4 Test Date(s): 06/28/16
- **3.5 Test Record Retention End Date**: All test records for this report will be retained until June 28, 2020.
- **3.6 Test Location**: Intertek-ATI test facility in Springdale, Pennsylvania.
- **3.7 Test Specimen Source**: The test specimen(s) were provided by the client. Representative samples of the test specimen(s) will be retained by Intertek-ATI for a minimum of four years from the test completion date.
- **3.8 Drawing Reference**: The test specimen drawings have been reviewed by Intertek-ATI and are representative of the test specimen(s) reported herein. Test specimen construction was verified by Architectural Testing per the drawings located in Appendix B. Any deviations are documented herein or on the drawings.

3.9 List of Official Observers:

<u>Name</u>	<u>Company</u>
Cornell Charles Joe Allison	Veka Inc. Intertek-ATI
Joshua Barone	Intertek-ATI

4.0 Test Specification(s):

AAMA 506-11, Voluntary Specifications for Impact and Cycle Testing of Fenestration *Products.*

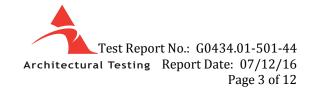
ASTM E 1886-05, Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials

ASTM E 1996-12, Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Windborne Debris in Hurricanes

5.0 Test Specimen Description:

5.1 Product Sizes:

Test Specimens #1 - #3:


Overall Area :	Width		Height	
1.9 m ² (20.2 ft ²)	millimeters	inches	millimeters	inches
Overall size	1016	40	1854	73
Exterior sash size	930	36-5/8	891	35-1/16
Interior sash size	962	37-7/8	924	36-3/8

5.2 Frame Construction:

Frame Member	Material	Description
Head, sill, jambs, and head insert	PVC	Extruded
Sill insert	Aluminum	Extruded

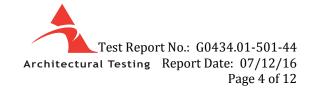
	Joinery Type	Detail
All corners	Mitered	Thermally welded
Head insert	Square-cut	Snap-fit
Sill insert	Square-cut	Sealed with silicone sealant and secured with four #8 x 2" long truss head screws, evenly spaced through the sill and into the wood buck.

5.0 Test Specimen Description: (Continued)

5.3 Sash Construction:

Sash Member	Material	Description
All rails and	PVC	Extruded
stiles	IVC	Extruded

	Joinery Type	Detail
All corners	Mitered	Thermally welded


5.4 Weatherstripping:

Description	Quantity	Location
0.480" high center fin pile with	1 Row	Exterior meeting rail (interior)
kerf mount offset base	INUW	Exterior meeting rai (interior)
0.187" backed by 0.300" high	1 Row	Head, sill
center fin pile	1 KOW	neau, sin
0.187" backed by 0.270" high	1 Row	Lock rail
center fin pile	1 KOW	LOCK TAIL
0.187" backed by 0.270" high		All stiles better reil
center fin pile	2 Rows	All stiles, bottom rail

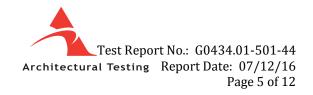
5.5 Glazing: No conclusions of any kind regarding the adequacy or inadequacy of the glass in any glazed test specimen(s) can be made.

Glass Type	Spacer Type	Interior Lite	Exterior Lite	Glazing Method
3/4" IG	Rectangular- shaped aluminum, single sealed	1/8" annealed glass / 0.090" thick Solutia Saflex® PVB inner layer / 1/8" annealed glass	1/8" annealed glass	The glass was set from the exterior against a PECORA® 896-HIS silicone sealant and secured with rigid vinyl glazing beads.

5.0 Test Specimen Description: (Continued)

5.5 Glazing: (Continued)

Location	Quantity	Dayligh	Glass	
Location	Quantity	millimeters	inches	Bite
Exterior sash	1	870 x 832	34-1/4 x 32-3/4	1/2"
Interior sash	1	872 x 832	34-5/16 x 32-3/4	1/2"


5.6 Drainage:

Drainage Method	Size	Quantity	Location
Weepslot with flap	1" wide by 1/4" high	2	Exterior sill face, one 3-1/2" in from each end
Weepslot	1" wide by 3/16" high	2	Intermediate sill wall, one at each end.
Weepslot	1" wide by 3/16" deep	2	Exterior sill track, one at each end
Weepslot	1" wide by 3/16" high	2	Exterior sill face at screen track, one at each end
Weephole	3/8" wide by 1/8" deep	2	Exterior meeting rail bottom surface, one at each end

5.7 Hardware:

Description	Quantity	Location
Composite cam lock	2	Lock stile, one 7-1/4" from each end, with mating keeper on the exterior meeting rail
Constant force balance system with locking pivot shoe	4	Two per jamb
Composite top mount tilt latch	2	Lock rail, one at each end
Flush mount plastic tilt latch	2	Top rail, one at each end
Interlocking metal pivot bar	4	Bottom rail and exterior meeting rail, one at each end
Metal tilt latch hook	2	Midspan of jambs, one at each end at the lock rail

5.0 Test Specimen Description: (Continued)

5.8 Reinforcement:

Drawing Number	Location	Material
RF SE4545 AOM	Bottom sash stiles, and bottom rail	Extruded aluminum
RF SE4546 AOM	Lock rail	Extruded aluminum
S-050	Top sash stiles, and rails	Extruded aluminum

5.9 Screen Construction: No screen was utilized.

6.0 Installation:

The specimen was installed into a Spruce-Pine-Fir wood buck. The rough opening allowed for a 1/8" shim space. The nail fin perimeter of the window was sealed with a silicone sealant.

Location	Anchor Description	Anchor Location
Integral nail fin	#8 x 2" truss head screw	Nominally spaced at 9" on center, and beginning in each corner
Jambs	#8 x 2" long truss head screw	One at midspan of each jamb (2)

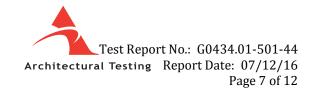
7.0 Test Results: The results are tabulated as follows:

ASTM E 1886, Large Missile Impact

Conditioning Temperature: 26°C (78°F) **Missile Weight**: 4037 g (8.90 lbs) **Missile Length**: 2.4 m (94") **Muzzle Distance from Test Specimen**: 5.2 m (17' 0")

Test Unit #1: Orientation within ±5° of horizontal

Impact #1: Missile Velocity: 15.4 m/s (50.4 fps)			
Impact Area:	Impact Area: Exterior center of bottom sash		
Observations:	Missile hit target area, broke exterior annealed lite and fractured interior laminated lite		
Results:	Pass		


Note: See Architectural Testing Sketch #1for impact locations.

Test Unit #2: Orientation within ±5° of horizontal

Impact #1: Missile Velocity: 15.4 m/s (50.6 fps)		
Impact Area: Exterior lower left corner of bottom sash		
Observations:	Missile hit target area, broke exterior annealed lite and fractured interior laminated lite	
Results:	Pass	

Note: See Architectural Testing Sketch #2 for impact locations.

ASTM E 1886, Large Missile Impact

Conditioning Temperature: 26°C (78°F) **Missile Weight**: 4037 g (8.90 lbs) **Missile Length**: 2.4 m (94") **Muzzle Distance from Test Specimen**: 5.2 m (17'0")

Test Unit #3: Orientation within ±5° of horizontal

Impact #1: Missile Velocity: 15.5 m/s (50.9 fps)			
Impact Area: Exterior upper right corner of bottom sash			
Observations: Missile hit target area, broke exterior annealed l and fractured interior laminated lite			
Results:	Pass		

Note: See Architectural Testing Sketch #3 for impact locations.

ASTM E 1886, Air Pressure Cycling

Test Unit #1 Design Pressure: ±2400 Pa (±50.13 psf)

Pressure Range Pa (psf)	Number of Cycles	Average Cycle Time (seconds)	Observations
480 to 1200 (10.03 to 25.06)	3500	1.38	
0 to 1440 (0.0 to 30.08)	300	1.43	No additional deformation abcomed
1200 to 1920 (25.06 to 40.10)	600	1.31	No additional deformation observed
720 to 2400 (15.04 to 50.13)	100	1.73	

POSITIVE PRESSURE

NEGATIVE PRESSURE

Pressure Range Pa (psf)	Number of Cycles	Average Cycle Time (seconds)	Observations
720 to 2400 (15.04 to 50.13)	50	1.74	
1200 to 1920 (25.06 to 40.10)	1050	1.40	No additional deformation observed
0 to 1440 (0.0 to 30.08)	50	2.07	No additional deformation observed
480 to 1200 (10.03 to 25.06)	3350	1.36	

Result: Pass

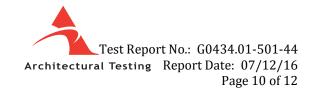
Note: *Test Specimens #1, #2, and #3 were cycled in a common chamber.*

ASTM E 1886, Air Pressure Cycling

Test Unit #2 Design Pressure: ±2400 Pa (±50.13 psf)

Pressure Range Pa (psf)	Number of Cycles	Average Cycle Time (seconds)	Observations
480 to 1200 (10.03 to 25.06)	3500	1.38	
0 to 1440 (0.0 to 30.08)	300	1.43	No additional deformation abcoursed
1200 to 1920 (25.06 to 40.10)	600	1.31	No additional deformation observed
720 to 2400 (15.04 to 50.13)	100	1.73	

POSITIVE PRESSURE


NEGATIVE PRESSURE

Pressure Range Pa (psf)	Number of Cycles	Average Cycle Time (seconds)	Observations
720 to 2400 (15.04 to 50.13)	50	1.74	
1200 to 1920 (25.06 to 40.10)	1050	1.40	No additional deformation observed
0 to 1440 (0.0 to 30.08)	50	2.07	No additional deformation observed
480 to 1200 (10.03 to 25.06)	3350	1.36	

Result: Pass

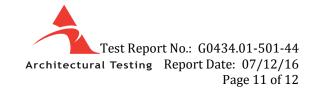
Note: *Test Specimens #1, #2, and #3 were cycled in a common chamber.*

ASTM E 1886, Air Pressure Cycling

Test Unit #3 Design Pressure: ±2400 Pa (±50.13 psf)

Pressure Range Pa (psf)	Number of Cycles	Average Cycle Time (seconds)	Observations
480 to 1200 (10.03 to 25.06)	3500	1.38	
0 to 1440 (0.0 to 30.08)	300	1.43	No additional deformation absorbed
1200 to 1920 (25.06 to 40.10)	600	1.31	No additional deformation observed
720 to 2400 (15.04 to 50.13)	100	1.73	

POSITIVE PRESSURE


NEGATIVE PRESSURE

Pressure Range Pa (psf)	Number of Cycles	Average Cycle Time (seconds)	Observations
720 to 2400 (15.04 to 50.13)	50	1.74	
1200 to 1920 (25.06 to 40.10)	1050	1.40	No additional deformation observed
0 to 1440 (0.0 to 30.08)	50	2.07	No additional deformation observed
480 to 1200 (10.03 to 25.06)	3350	1.36	

Result: Pass

Note: *Test Specimens #1, #2, and #3 were cycled in a common chamber.*

General Note: Upon completion of testing, the specimens met the requirements of Section 7 of ASTM E 1996.

8.0 Test Equipment:

Cannon: Constructed from steel piping utilizing compressed air to propel the missile

Missile: 2x4 Southern Pine

Timing Device: Electronic Beam Type

Cycling Mechanism: Computer controlled centrifugal blower with electronic pressure measuring device

Tape and film were used to seal against air leakage during structural testing.

Architectural Testing will service this report for the entire test record retention period. Test records such as detailed drawings, datasheets, representative samples of test specimens, or other pertinent project documentation, will be retained by Architectural Testing, Inc. for the entire test record retention period.

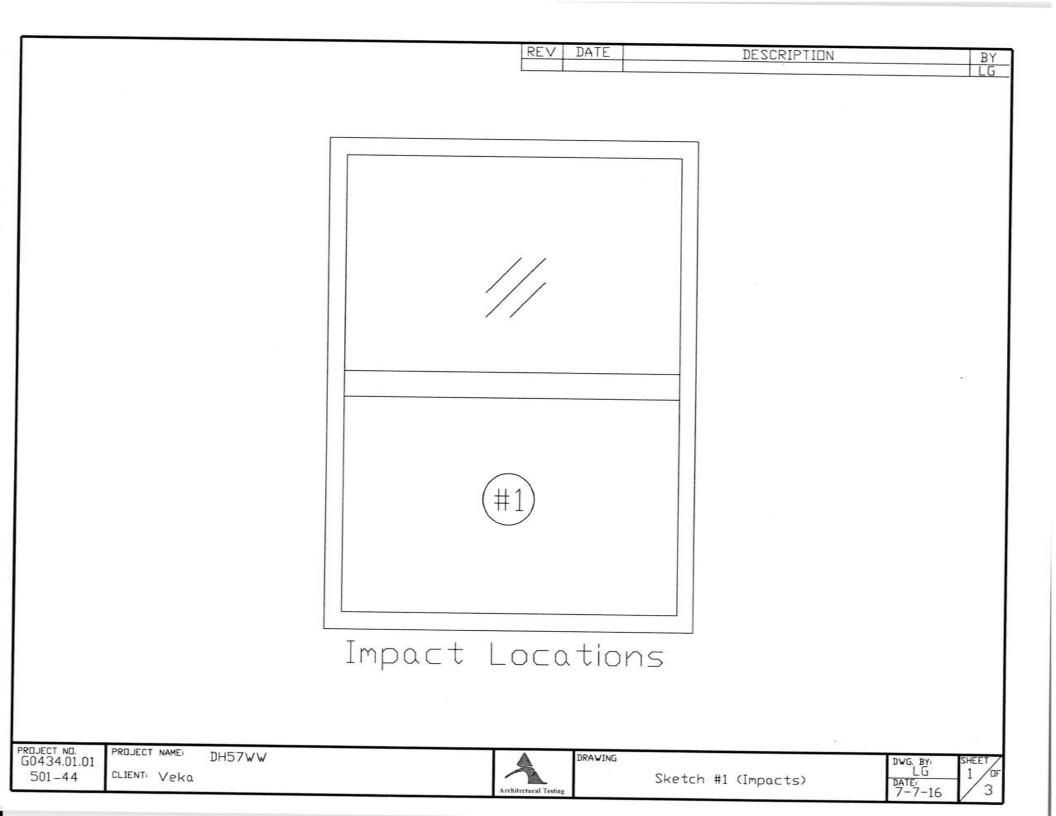
This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

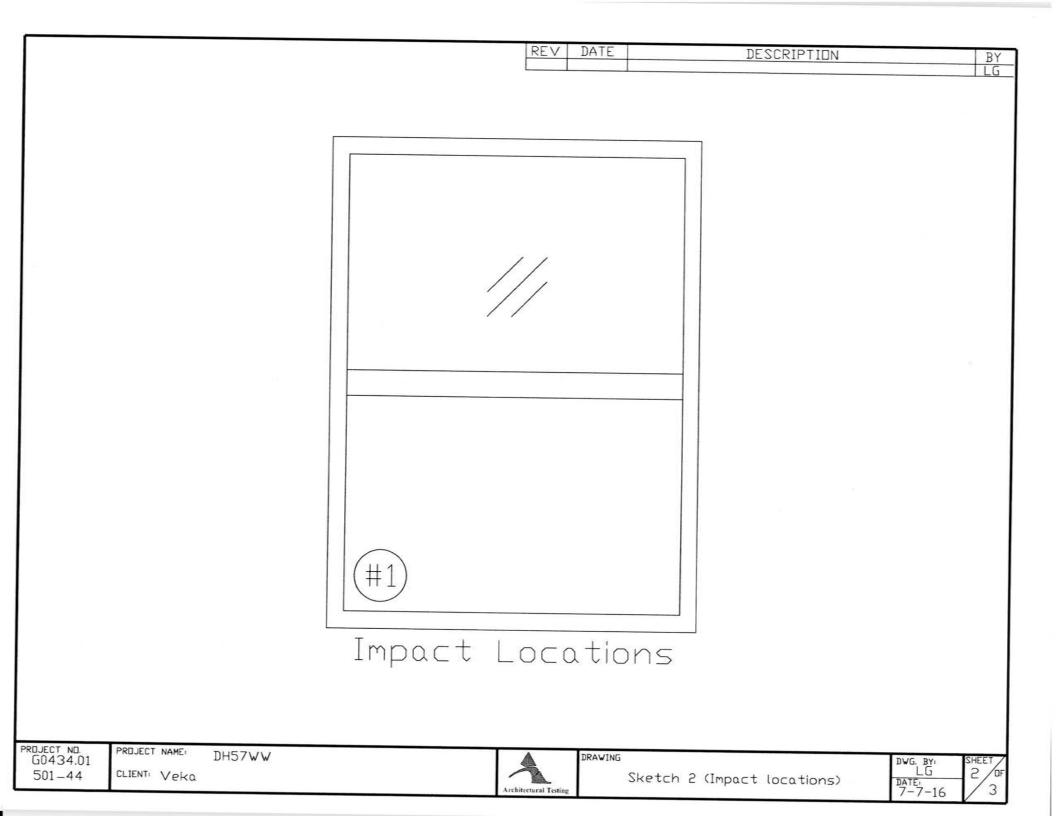
For ARCHITECTURAL TESTING, Inc.

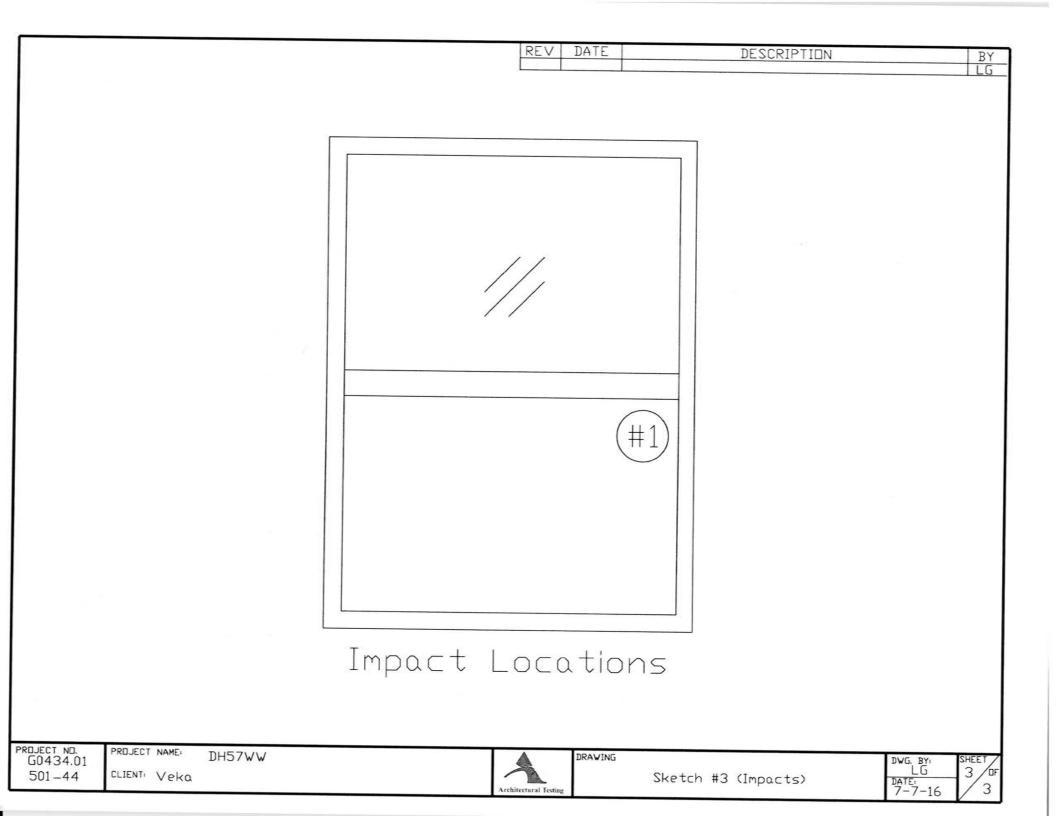
Joshua Barone Technician Lynn George Director

JB:sld

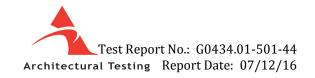
Attachments (pages): This report is complete only when all attachments listed are included. Appendix-A: Sketch(es) (3) Appendix-B: Drawing(s) (2) Complete drawings packet on file with Intertek-ATI

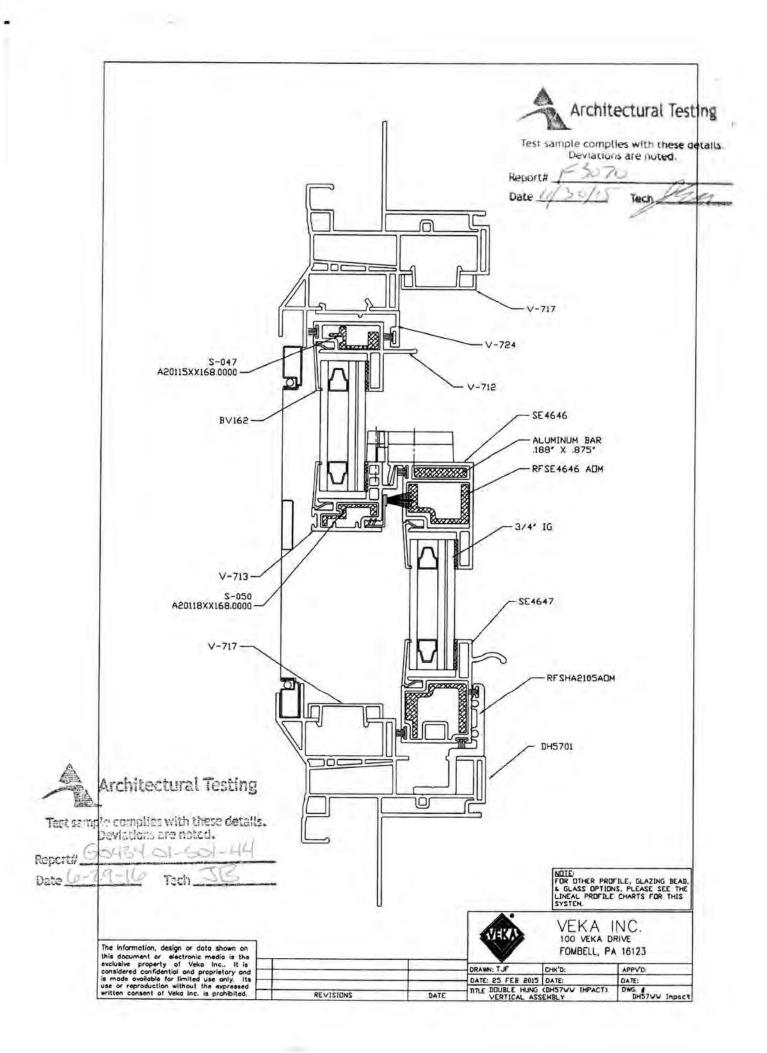

This report produced from controlled document template ATI 00511, revised 06/26/14.

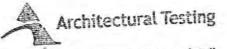




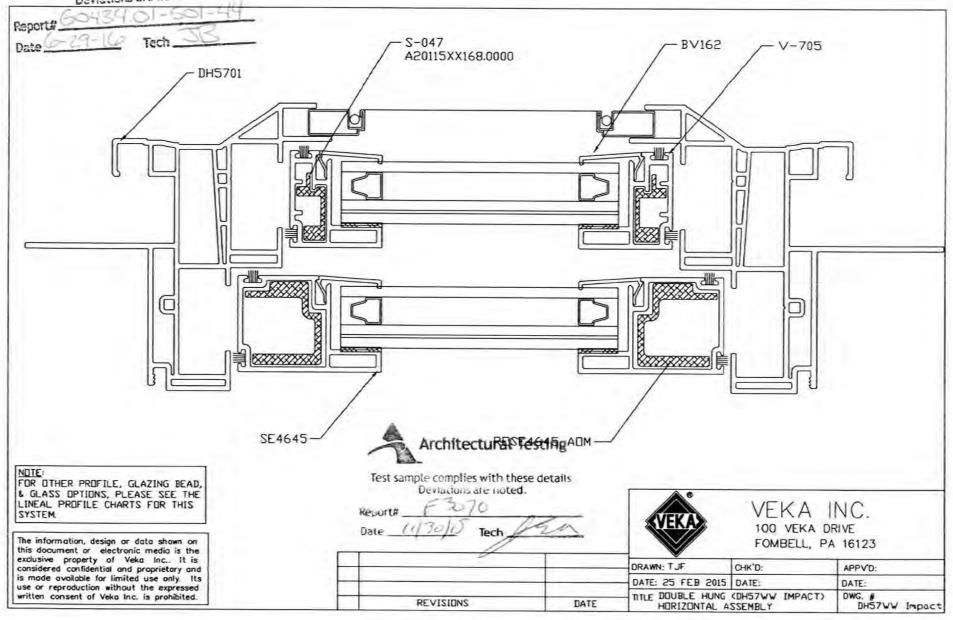
Appendix A


Sketch(es)





Appendix B


Drawing(s)

Note: Complete drawings packet on file with Intertek-ATI

Test sample complies with these details. Deviations are noted.

